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SECTION @)--GROUND-WATER CONTAMINATION 

The goal of this section of the course is to introduce the physical 
mechanisms'of solute movement in ground water. Further treatment of the vast 
and rapidly developing area of science and technology related to ground-water 
contamination can be found in the extensive literature that is available or in 
additional training courses. 

Background and Field Procedures Related to Ground-Water Contamination 

Assignments 

*Study Fetter (1988), p. 367-389, 406-442; Freeze and Cherry (1979), p. 
384-457; or Todd (1980), p. 344-346. 

The depth of topical coverage in this section of the course will depend _ 
primarily on the time available and the interests of the instructors and 
participants. A useful and readable discussion on the conceptualization and 
organization of a field study involving solute transport, along with a 
pertinent bibliography, is provided by Reilly and others (1987). 

Physical Mechanisms of Solute Transport in Ground Water 

Assignments 

*Study Fetter (1988), p. 389-405. 

*Study Note (5-1)--Physical mechanisms of solute transport in ground water 

*Work Exercise (5-l) --Ground-water travel times in the flow system beneath 
a partially penetrating impermeable wall 

*Work Exercise (5-2)--Advective movement and travel times in a hypothetical 
stream-aquifer system 

*Study Note (5-2) --Analytical solutions for analysis of solute transport in 
ground water 

*Work Exercise (5-3) --Application of the one-dimensional advective-dispersive 
equation 

The background for this section is provided in Note (5-l), which is an 
introductory discussion of the basic physical mechanisms of solute 
movement--advection and dispersion. Exercises (5-l) and (5-2) consider only 
advective movement of ground water and involve calculation of travel times by 
using the average linear velocity (Darcy velocity divided by porosity). In 
Exercise (5-l) travel times are calculated in a vertical cross-section of a 
simple flow system, and in Exercise (5-2) travel times are calculated in plan 
view. 
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Comments on the field application of analytical solutions to the 
advective-dispersive differential equation are provided in Note (5-2), and 
Exercise (5-3) involves numerical calculations with one of the simplest 
analytical solutions. 

Note (5-l) .--Physical Mechanisms of Solute Transport in Ground Water' 

The following section on physical mechanisms of solute transport in 
ground-water systems (1) defines and describes the two physical mechanisms 
advection and dispersion, (2) emphasizes the interdependence of these 
mechanisms and the implications of the scale of analysis in transport studies, 
and (3) addresses the primary goal of the study of physical mechanisms--to 
define a working approximation of the three-dimensional ground-water-flow 
velocity field affecting the contaminant plume, by building upon the 
information and knowledge gained in the hydraulic analysis and description of 
solute distribution. 

Advection is the process by which solutes are transported by the bulk 
motion of the flowing ground water (Freeze and Cherry, 1979, p. 75). The bulk 
motion of the flowing ground water is characterized by the average linear 
velocity (v), which is defined as 

K dh 
v=..- -- 

n dl 

where 

K- hydraulic conductivity (L/T), 
n = porosity (dimensionless), 
h= hydraulic head (L), and 
1 = distance along a flowline (L). 

The Darcian velocities developed by using a flow model differ from the 
actual velocities required for transport analysis in that the average linear 
velocity (v) is the Darcian velocity (q) divided by porosity (n); that is, 

v = q/n. 

Thus, a new, spatially varying parameter, the porosity (n) of the porous 
material in the neighborhood of the point at which velocity is calculated, is 
introduced. Errors in estimating the magnitude and distribution of porosity 
produce proportional errors in estimates of actual ground-water velocity. 

1 This note on the physical mechanisms of solute transport in ground-water 
systems is from Reilly and others (1987, p. 21-29). 

159 



A more subtle difference between the velocity field developed by using a 
flow model designed for basic hydraulic analysis and the velocity field 
required for transport analysis is the scale at which the physical processes 
are considered. In the analysis of ground-water flow, the flow field usually 
is studied at a scale that is much larger in area than the area of a 
contaminant plume, because an accurate definition of boundary conditions is 
required to achieve a physically reasonable simulation. At this regional 
scale, the properties of the porous medium and variations in velocity are 
averaged. In the analysis of the velocity field for transport analysis, 
however, a more detailed scale is required. This finer scale permits the 
representation of local variations in hydraulic conductivity resulting from 
the heterogeneous nature of the porous media to be represented if possible. 
It also permits greater resolution in describing changes in velocity (both 
magnitude and direction) due to the three-dimensional movement of the ground 
water in response to local conditions. 

Regardless of the degree of detail that is included in the representation 
of the flow field used to calculate the ground-water velocities, however, 
variations between actual and calculated velocities remain that cannot be 
accounted for explicitly. In any calculation of advective transport, whether 
by numerical model or by using an analytical solution, we assume that the 
velocity is uniform or varies in a simple way over specified regions of the 
flow field. For example, suppose a uniform flow in the x direction is 
simulated using the array of model nodes shown in figure 5-l. In calculations 
of solute transport using numerical models, velocity in the x direction is 
assumed to be uniform or to vary in a simple way (such as bilinear 
interpolation) in both magnitude and direction over the rectangular region R, 
which extends between adjacent nodes in the x direction. This uniformity is 
vertical as well as areal--that is, within the area R, velocity is assumed to 
be constant over the vertical depth interval represented by the simulation. 
By contrast, the actual ground-water velocity in the block of aquifer 
represented by R would exhibit different spatial variations depending on the 
scale at which the velocity is considered. 

At the microscopic (pore) scale, velocity varies from a maximum along the 
centerline of each pore to zero along the pore walls, as shown in figure 
5-2(A); both the centerline velocity and the velocity distribution differ in 
pores of different size. In addition, flow direction changes as the fluid 
moves through the tortuous paths of the interconnecting pore structure, as 
shown in figure 5-2(B).. 

At a larger (macroscopic) scale, local heterogeneity in the aquifer 
causes both the magnitude and direction of velocity to vary as the flow 
c,oncentrates along zones of greater permeability or diverges around pockets of 
lesser permeability. In this discussion, the term "macroscopic heterogeneity" 
is used to suggest variations in features large enough to be readily 
discernible in surface exposures or test wells, but too small to map (or to 
represent in a mathematical model) at the scale at which we are working. For 
example, in a typical problem involving transport away from a landfill or 
waste lagoon, macroscopic heterogeneities might range from the size of a 
baseball to the size of a building. 
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j j+l 

Figure 5-l. --Array of model nodes with region R between two representative 
nodes (i,j and i,j+l). 

A B 

Figure 5-2.--(A) Approximate fluid velocity distribution in a single pore, and 
(B) tortuous paths of fluid movement in an unconsolidated porous 
medium. 
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Figure 5-3, which shows some results of laboratory tracer experiments in 
heterogeneous media by Skibitzke and Robinson (1963), illustrates the effects 
of macroscopic heterogeneity. The net effect is to increase the spreading of 
the solute in the system. This effect tends to increase progressively with 
the scale of the heterogeneity. At a still larger scale, we can envision 
heterogeneities that could be mapped at the scale at which we are working, and 
which could be taken into account in our calculations of advective transport, 
but which simply have not been recognized in the field or accounted for in 
simulation. Mercado (1967; 1984) showed the results of this effect in an 
analysis of the spreading of injected water that was caused by stratified 
layers of different permeabilities. 

The velocity variations described for these three scales share certain 
characteristics: 

(1) they may occur both areally and vertically over the region R 
(fig. 5-l); 

(2) they influence the distribution of ions or tracers moving through the 
system; and 

(3) they are not represented in calculations of advective solute movement 
through the region R that are made using the uniform model velocity. 

Using the velocity from the model, a tracer front introduced at the left side 
of region R would be predicted to traverse R as a sharp front moving with the 
average linear velocity of the water. In reality, however, a tracer front 
becomes progressively more irregular and diffuse as it moves through a porous 
medium. If we consider a vertical plane through the aquifer at the left edge 
of region R, the actual velocity varies in both magnitude and direction from 
one point to another; the same is true in the flow direction. Thus each 
tracer particle enters R at a velocity that generally is different from that 
of its neighbors, and each particle experiences a different sequence of 
velocities as it crosses R from left to right. Instead of a sharp front of 
advancing tracer as shown in figure 5-4(A), we see an irregular advance as in 
5-4(B), with the forward part of the tracer distribution becoming broader and 
more diffuse with time. The pore-scale or microscopic velocity variations 
contribute only slightly to this overall dispersion; macroscopic variations 
contribute more significantly, whereas "mappable" variations generally have 
the largest effect. 

If it were possible to generate a model or a computation that could 
account for all of the variations in velocity in natural aquifers, dispersive 
transport would not have to be considered (except for molecular diffusion); 
sufficiently detailed calculations of advective transport theoretically could 
duplicate the irregular tracer advance observed in the field. In practice, 
however, such calculations are impossible. Field data at the macroscopic 
scale never are available in sufficient detail, information at the "mappable" 
scale rarely is complete, and descriptions of microscopic scale variations are 
impossible except in a statistical sense. Even if complete data were 
available, however, an unreasonable computational effort would be required to 
define completely the natural velocity variations in an aquifer. 
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BANDS OF HIGH HYDRAULIC CONDUCTIVITY 

Figure 5-3. --Results of a Laboratory experiment to determine the effects of 
macroscopic heterogeneity on a tracer. (Modified from Skibitzke 
and Robinson, 1963:) 
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The more closely we represent the actual permeability distribution of an 
aquifer, the more closely our calculations of advective transport match 
reality; the finer the scale of simulation, the greater is the opportunity to 
match natural permeability variations. In most situations, however, when both 
data collection and computational capacity have been extended to their 
practical limits, calculations of advective transport fail to match field 
observation;' therefore, we must find a tractable method of adjusting or 
correcting such calculations. 

Historically, the effort to develop such a method of correction followed 
the diffusion model. Diffusion had been analyzed successfully as a process of 
random particle movement which, in the presence of concentration change, 
results in a net transport proportional to the concentration gradient in the 
direction of decreasing concentration. In the case of a moving fluid, the 
random movement ascribed to diffusion was viewed as superimposed on the motion 
caused by the fluid velocity. Thus, the net movement of any solute particle 
could be regarded as the vector sum of an advective component and a random 
diffusive component. 

By analogy, it was assumed that solute transport through porous media 
could be viewed in the same way-- as the sum of an advective component in which 
solutes move with the average linear velocity of the fluid, and a random 
"dispersive" component superimposed on the advective motion (Saffman, 1959). 
In effect, dispersion was seen as the net transport with respect to a point 
moving with the average linear velocity of the fluid. Because the dispersive 
motion of solute particles was assumed to be random, the flux was taken to be 
proportional to the concentration gradient. 

While many difficulties have been perceived with the 
concentration-gradient approach, no satisfactory alternative has yet been 
found. Currently, we know that some method is required to adjust and correct 
the results of advective-transport calculations. The method commonly employed 
is to postulate an additional transport that is proportional to the 
concentration gradient in the direction of decreasing concentration; however, 
the coefficient of proportionality is treated as a function of the average 
flow velocity. 

This approach can be derived or justified mathematically if assumptions 
similar to those used in the analysis of molecular diffusion in moving liquids 
are made --that is, if the actual velocity of particles through the system can 
be described as the sum of two components: (1) the average velocity used in 
advective calculation, and (2) a random deviation from the average velocity. 
To the extent that scale variations in velocity represent random deviation 
from the velocity used in advective transport calculation, and to the extent 
that these variations occur on a scale which is significantly smaller than the 
size of the region used for advective calculation (for example, region R of 
figure 5-l), dispersion theory may describe adequately the differences between 
advective calculation and field observation. However, if the velocity 
variations are not random, or if they are large relative to the region used 
for advective calculation, the suitability of the dispersion approach is 
questionable. Moreover, even when this approach appears to be justified, 
determination of the necessary coefficients usually must be approached 
empirically (for example, through model calibration). The range of validity 
of the quantities determined in this manner is uncertain. 
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Variations in velocity most often are caused by variations in the 
permeability and effective porosity of the porous medium on all three of the 
relevant scales. In theory, therefore, it should be possible to describe the 
dispersive-transport process through statistical analysis of variations in 
aquifer permeability. Gelhar and Axness (1983) have attempted to do this by 
using a stochastic analysis of permeability variation at the macroscopic scale 
to generate dispersivity values. The utility of this approach currently is 
limited by the difficulty in obtaining the necessary data on the statistics of 
permeability variation. However, Gelhar has demonstrated that in the limit, 
as distances of transport become large, a concentration-gradient approach is 
justified on theoretical grounds. 

Because dispersive transport actually represents an aggregate of the 
deviations of actual particle velocities from the velocity used in 
advective-transport calculation, coefficients of dispersion must vary as the 
overall velocity of flow varies in order to create agreement between computed 
and observed results. As overall flow velocities in the system increase, the 
magnitude of velocity deviations from the average velocity used in 
advective-transport calculation must increase as well; therefore, dispersive 
transport is dependent on average flow velocity. 

The description of dispersion in terms of velocity variation implies that 
problem scale must be a factor in any calculation of dispersive effects. As 
the size of the region used in advective-transport calculation (for example, 
region R in figure 5-l) increases, more heterogeneities are included in that 
region. If a small region of calculation is chosen (for example, 
corresponding to the size of a laboratory column), the dominant 
heterogeneities within it are those at the pore scale; dispersive effects and 
dispersion coefficients are correspondingly small. As the region R becomes 
larger, macroscopic and ultimately "mappable" heterogeneities dominate. Thus, 
as larger regions of calculation are taken, the dispersive effects tend to 
increase in magnitude, the determination of the coefficients required for 
their description becomes more difficult, and the applicability of the 
conventional concentration-gradient approach becomes questionable. In 
general, the scale at which advective-transport calculations are made (for 
example, the scale of discretization in a model analysis) ideally reflects the 
existing level of knowledge of heterogeneities in the system. The scale is 
chosen to be fine enough so that the effects of all recognized heterogeneities 
can be accounted for by advective transport, yet coarse enough so that 
individual regions of advective-transport calculation are large with respect 
to their unknown internal heterogeneities, which must be described by 
dispersive terms. Thus, in any calculation of the physical mechanisms of 
solute transport, advection and dispersion are interrelated, and the 
appropriate values of dispersion depend on the scale at which the advective 
field is quantified. 
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Exercise (5-l)--Grourid-Water Travel Times in the Flow System Beneath a 
Partially Penetrating Impermeable Wall 

Our goal in this exercise is to estimate travel times in the ground-water 
system beneath the partially penetrating impermeable wall (fig. 5-5) for which 
we developed a flow net in Exercise (3-2). First, we must make an assumption 
concerning the movement of the "tracer water" through the system. 

Assume that at some instant of time (t=O, or reference time in this 
problem), water of different quality enters the flow field at the upper left 
inflow boundary and moves through the system. We assume that the "new" water 
moves by piston flow or plugflow, completely displacing the "old" water. 
Because we assume there is no mixing of the two waters--that is the processes 
of dispersion and diffusion are not acting--a sharp boundary or "front" exists 
between the two fluids as the "new" water advances through the system. From 
Darcy's law the specific discharge, or Darcy velocity q, is given by 

KAh 
q = --- 

L 

where L is the distance between two points on the same streamline at which 
head values h, and h are known and 4 -h, = Ah. The "actual" or average 
linear velocity v is given by 

q KAh 
v 3: - = --- 

n nL 

where n is the porosity of the earth material. Remembering that distance of 
travel (L) = velocity x time or L = vt, then v = L/t. Substituting for v and 
rearranging, we obtain 

L 
--- nL* 

t = I<l\h = -mm. 
-em KAh 

X-L 

This is the basic formula for calculating the time of travel between two 
points on a streamline that are a distance L apart. 

Given that K = 45 ft/d and n = 0.30, the formula for time of travel 
between two points on a streamline in the impermeable-wall problem is 

6.67 x 10''L* 
t = ------------- 

Ah 

where t is in days. 
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1. Using the format in table 5-1, calculate times of travel from node to 
node along the two bounding streamlines (streamlines "a" and "f" on figure 
5-5) of the flow system. For these two streamlines, because we are 
calculating travel times between nodes, L is constant and equals 5 feet. 
Thus, for these two streamlines only, 

. 167 
t = ---- . 

Ah 

Our main interest in this problem is not the travel times between points 
on the streamlines, but the total time of travel from the upper left-hand 
inflow boundary to the point in question. The value of "Et" in table 5-l 
represents this total calculated travel time along the given streamline from 
the inflow boundary to the given point on the streamline. Plot the values of 
Et at the appropriate points on figure 5-5. 

2. An internal streamline (flowline (c), fig. 5-5) from the original 
flow net beneath the impermeable wall (Exercise 3-2) has been traced onto 
figure 5-5. Intersections of the potential lines from the original flow net 
are marked on this internal streamline. Calculate travel times along this 
internal streamline between intersection points of potential lines. Note that 
in this case Ah is constant and L varies. Calculate and plot-Et at 
appropriate points on figure 5-5 as before. 

3. Contour Et values for Ct equal to 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 
5.0, and 10.0 days. The contour lines represent calculated positions of the 
sharp front between "new" and "old" water at successive times after 
introduction of the "new" water at the inflow boundary. 

What time is required for "new" water to reach the discharge boundary? 
What time is required for "new" water to completely fill the flow system? At 
the end of this analysis, recall that we assumed piston flow in our time 
calculations, and that our calculations are only approximate, even for this 
assumption. However, this approach gives useful order-of-magnitude estimates 
of travel times in ground-water flow systems. 
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0 
Table 5-l. --Format for calculation of time of travel along selected flowlines 

in impermeable-wall problem (page- 1 of 9) 

[h is head at a node or other point in flow system; L is distance 

between two points on a flowline at which head is known; $h is j 

difference in head between two points on a flowline; t Is time of 

travel between two points on a flowline; It is time of travel from 

inflow boundary to point on flowline] 

h 

(feet) 

L 

(feet) 

Ah 

(feet) 

t (days) = 

6.67 x 1O-8 L2 
-------------- 

Ah 

Ct 

(days) 
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Table 5-l .-- Format for calculation of time of travel along selected flowlines 
in impermeable-wall prob Lem (page 2 of 3) 

t (days) = 

h L Ah 6.67 x 1O-a L2 Et 
__------------ 

(feet) (feet) (feet) Ah (days) 
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Table S-1, --Format for calculation of time of travel along selected f Lowlines 
impermeable-wall problem (page 3 of 3) 

t (days) = 

h L Ah 6.67 x 1O-3 L* Ct 
-------------- 

(feet) (feet) (feet) Ah (days) 



Exercise (S-2)--Advective Movement and Travel Times in a Hypothetical 
Stream-Aquifer System 

In Exercise (l-6), the approximate positions of flowlines from points A 
and B (fig. 1-12) to streams in an area1 flow system were drawn. These 
flowlines are given in figure 5-6. Assuming a uniform gradient, a hydraulic 
conductivity (K) of 125 ft/d, and a porosity of 0.33, calculate the 
approximate time for a contaminant placed at points A and B to.move 
advectively to a stream. 

For advective flow, the average linear velocity (Fetter (1988), p. 391) 
is 

K dh 
v = - -- . 

n dl 

1. Measure the total length (L) of each streamline. 

2. Calculate the "average" velocity along each streamline, assuming a 
constant gradient. 

3. Calculate the time required to travel the distance (L) to the stream by 
dividing the distance by the average velocity. 

Simple calculations of this type are extremely useful in understanding 
contaminant behavior. Franke and Cohen (1972) estimated the positions of 
flowlines (fig. 5-7) in a stream-aquifer system. These flowlines, when used 
in conjunction with estimated hydraulic conductivities, porosities, and 
gradients, enabled the estimation of travel times (fig. 5-8) for the entire 
stream basin. These time-of-travel estimates can then be used to predict the 
movement and persistence of contaminants in the shallow ground-water system. 

Note (S-2) .--Analytical Solutions for Analysis of Solute Transport 
in Ground Water 

As discussed in Note (4-2), an analytical solution, which is a formal, 
closed-form mathematical solution to a boundary-value problem, simulates 
ground-water systems that are highly idealized and generally simple relative 
to the usual complexity of natural systems. For example, in these systems the 
external geometry usually is simple (squares, rectangles, and circles or 
three-dimensional equivalents), and the flow medium is at least homogeneous, 
if not isotropic and homogeneous, so that the properties of the flow medium 
are specified easily. In view of this inherent simplicity, the similarity 
between the system represented in the mathematical solution and the natural 
system never is exact and often is poor. However, valuable qualitative 
insight into the real system often can be gained through easily executed 
numerical experimentation with similar hypothetical systems. In general, 
however, considerable care is required to relate one or more of the available 
mathematical solutions to the natural system under study. 
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EXPLANATION 

LO- WATER-TABLE CONTOUR -- Shows altitude of water table. 
Contour interval 10 feet Datum is se’a level 

0 4’ LOCATION OF START OF FLOW OF STREAM -- Number IS 
altitude of stream, in feet above sea level 

A2 LOCATION AND NUMBER OF STREAM DISCHARGE 
MEASUREMENT POINT 

Figure 5-6. --Hypothetical water-table map of an area underlain by permeable 
deposits in a humid climate. 
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figure 5-7 .--Ground-water flow net in 
the vicinity of East 
Meadolu Brook, Long 
I$land, New York, in 
October 1961. (From 
Franke and Cohen, 
1972.) 
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EXPLANATION 

-IS--= LlNEOFEQUAS.TlhlRREQUlRED 
FOR GROUND WATER To 
DISCHMOEIN’TOSTREAM- 
lIwvd5yam 

- - - lNFRMJZD DIRECYION OF 
GRouND-wATFRmow 

x AlTROXlMA’TE FOlNT OF START 
oFFLowoFBAsTmADow 
BROOK 0CItIBE.R I%1 

Figure 5-8. --Approximate time required for 
a particle of water in the 
shaLlow ground-water 
subsystem to discharge into 
East Meadow Brook, Long 
Island, New York, under 
conditions similar to those 
in October 1961. (From 
Franke and Cohen, 197Z.) 
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As discuss ed in Reilly and others (1987), boundary conditions are a key 
feature to cons ider in selecting a mathematical solution as a surrogate for 
the natural sys tern and in evaluating the degree of correspondence between the 
two systems. The value of applying analytical solutions to a field situation 
often lies in using them to define limiting cases and then comparing the 
results of the analytical solution with field data. For example, an 
analytical solution might represent advective and dispersive transport of a 
conservative solute in a highly idealized flow field. By judicious selection 
of the parameters for several cases, the results 'from a series of solutions to 
this hypothetical problem may bracket the distribution of a conservative 
constituent in the field problem. If this bracketing does not occur, some 
process in the natural system requires further explanation. Some of the 
available analytical solutions for solute-transport problems are given by Bear 
(1972), Bear (1979), Freeze and Cherry (1979), and Javandel and others (1984). 
In addition, Wexler (1989) compiled nine analytical solutions for 
one-, two-, and three-dimensional solute transport problems and provides 
computer programs to facilitate their use. 

Fetter (1988, p. 393-394) g ives the governing one-dimensional 
differential equation for advection and dispersion as 

WC ac ac 
D -me - v -- = _- 

8x2 ax at 

where 

(1) 
a 

D is the longitudinal dispersion coefficient (L2/T), 
c is the solute concentration (M/La), 
v is the average linear velocity in the x-direction (L/T), and 
t is the time since start of solute invasion (T). 

The analytical solution to this governing differential equation gives the 
concentration, c, at some distance, L, from the source, whose concentration is 
ca, at time, t, as 

CO L-vt 
c = WV 

2 [ erfc ( --;- ) + exp ( :L- ) erfc ( zg )] 

For conditions in which the dispersion coefficient is small or L or t is 
large, the second term is negligible and the equation reduces to 

CO L-vt 
c = __ erfc -_-_ . 

2 21JE 

(2) 

(3) 

0 
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Exercise (5-3)--Application of the One-Dimensional Advective-Dispersive 
Equation 

The one-dimensional advective-dispersive equation, given in Note (5-2) 
and in Fetter (1988, p. 394), may be used to develop an estimate of the 
transport and distribution of solutes in a three-dimensional natural system. 
After reading sections 10.6.4, 10.6.5, and 10.6.6 in Fetter (1988, p. 
391-397), do the example problem in Fetter (1988) on page 395 for practice in 
using the equation. 

Note that step 2 of the sample problem, "Determine the longitudinal 
dispersion coefficient," is not accurate. This method of estimating the 
dispersion coefficient is used simply to facilitate the calculation. 
Actually, as discussed in Note (5-l), the value of the dispersion coefficient 
usually is determined by history-matching in a numerical simulation. Active 
research whose goal is to determine the dispersion coefficient based on the 
distribution of hydraulic conductivity at the local scale is in progress. 

Using the simplified one-dimensional analytical solution given in Note 
(S-21, calculate the solute concentrations at the intervals given in tables 
5-2 and 5-3 for a dispersion coefficient, D, of 10 ft2/d and 100 ft2/d, and 
compare the results. Use the values 

t = 1,000 days, 
v = 2 ft/d, and 
C, = 100 mg/L, 

the two tables, and the values of the complementary error function (erfc) in 
Appendix 13 of Fetter (1988, p. 562). Plot the results of the calculations on 
figure 5-9 as a graph of relative concentration C/C, against distance from 
source L. 

Answer the following questions: 

1. What is the effect of the larger dispersion coefficient? 

2. What distance would the solute have traveled under plug flow (purely 
advective movement, x = vt)? Draw a vertical line on figure 5-9 at this 
distance. What solute concentration is calculated at that distance for 
each dispersion coefficient? 
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Tab Le 5-2. --Format for calculating solute concentrations when the 
dispersion coefficient D = 10 square feet per day and 
the elapsed time t = 1,000 days 

[ft*/d, square feet per day; mg/L, milligrams per liter] 

Co L - vt 
Formula for calculations: C = -- erfc ( 

------ where 
2 2&T 

1 

C 3 concentration of solute at point in plume at specified time, 
in mg/L 

CO = solute concentration of source, in mg/L 
L = distance from source, in feet 
V = average linear velocity of ground water, in ft/d 
t = elapsed time since introduction of solute at source, in days 
D = dispersion coefficient, in ft2/d 
erfc = complementary error function (see text) 

Preliminary calculation: 

For D = 10 ft2 /d, (";;;', = 

L 
(feet) 

1,500 

L-2,000 L-2,000 1 L-2,000 
--s--s- erfc ( ------- 1 C = 50 mg/L erfc(------- 

200 200 200 

1,600 

1,700 

1,800 

1,900 

2,000 

2,100 

2,200 

2,300 

2,400 

l erfc(-x) = 1 + erf(x). 
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Table 5-3. --Format for calculating solute concentrations when the 
dispersion coefficient D = 100 square feet per day and 
the elapsed time t = 1,000 days 

[fizz/d, feet squared per day; mg/L, milligrams per lite'r] 

Formula for 

C = 

co = 
L = 
v = 
t = 
D = 
erfc = 

Preliminary 

CO L - vt 
calculations: C = -- erfc ------ 

2 
( 1 where 

2G 

concentration of solute at point in plume at specified time, 
in mg/L 
solute concentration of source, in mg/L 
distance from source, in feet 
average linear velocity of ground water, in ft/d 
elapsed time since introduction of solute at source, in days 
dispersion coefficient, in ft2/d 
complementary error function (see text) 

calculation: 

*L - vt. 
I For D = 100 ft2/d, (-;;---I = 

L-2,000 L-2,000 1 L-2,000 
L -----em erfc ( 

----mm- ) C = 50 mg/L 
(feet) 632.5 632.5 

erfc(-------) 
632.5 

1,000 

1,250 

1,500 

1,750 

2,000 

2,250 

2,500 
, 

2,750 I 

3,000 

l erfc(-x) = 1 + erf(x). 
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